Spheromak

A model of a spheromak forming inside a chamber (far right)
A model of a spheromak forming inside a chamber (far right)

A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring.[1] The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids. A spheromak can be made and sustained using magnetic flux injection, leading to a dynomak.[2]

The physics of the spheromak and of collisions between spheromaks is similar to a variety of astrophysical events, like coronal loops and filaments, relativistic jets and plasmoids. They are particularly useful for studying magnetic reconnection events, when two or more spheromaks collide. Spheromaks are easy to generate using a "gun" that ejects spheromaks off the end of an electrode into a holding area, called the flux conserver. This has made them useful in the laboratory setting, and spheromak guns are relatively common in astrophysics labs. These devices are often, confusingly, referred to simply as "spheromaks" as well; the term has two meanings.

Spheromaks have been proposed as a magnetic fusion energy concept due to their long confinement times, which was on the same order as the best tokamaks when they were first studied. Although they had some successes during the 1970s and '80s, these small and lower-energy devices had limited performance and most spheromak research ended when fusion funding was dramatically curtailed in the late 1980s. However, in the late 1990s research demonstrated that hotter spheromaks have better confinement times, and this led to a second wave of spheromak machines. Spheromaks have also been used to inject plasma into a bigger magnetic confinement experiment like a tokamak.[3]

  1. ^ Arnie Heller, "Experiment Mimics Nature's Way with Plasmas", Lawrence Livermore National Laboratory
  2. ^ Jarboe, T. R., et al. "Recent results from the HIT-SI experiment." Nuclear Fusion 51.6 (2011): 063029
  3. ^ Brown, M. R.; Bellan, P. M. (30 April 1990). "Current drive by spheromak injection into a tokamak" (PDF). Physical Review Letters. 64 (18). American Physical Society (APS): 2144–2147. Bibcode:1990PhRvL..64.2144B. doi:10.1103/physrevlett.64.2144. ISSN 0031-9007. PMID 10041595.