Spin isomers of hydrogen

Spin isomers of molecular hydrogen

Molecular hydrogen occurs in two isomeric forms, one with its two proton nuclear spins aligned parallel (orthohydrogen), the other with its two proton spins aligned antiparallel (parahydrogen).[1] These two forms are often referred to as spin isomers[2] or as nuclear spin isomers.[3]

Parahydrogen is in a lower energy state than is orthohydrogen. At room temperature and thermal equilibrium, thermal excitation causes hydrogen to consist of approximately 75% orthohydrogen and 25% parahydrogen. When hydrogen is liquified at low temperature, there is a slow spontaneous transition to a predominantly para ratio, with the released energy having implications for storage. Essentially pure parahydrogen form can be obtained at very low temperatures, but it is not possible to obtain a sample containing more than 75% orthohydrogen by heating.

A mixture or 50:50 mixture of ortho- and parahydrogen can be made in the laboratory by passing it over an iron(III) oxide catalyst at liquid nitrogen temperature (77 K)[4] or by storing hydrogen at 77 K for 2–3 hours in the presence of activated charcoal.[5] In the absence of a catalyst, gas phase parahydrogen takes days to relax to normal hydrogen at room temperature while it takes hours to do so in organic solvents.[5]

  1. ^ P. Atkins and J. de Paula, Atkins' Physical Chemistry, 8th edition (W.H.Freeman 2006), p. 451–2 ISBN 0-7167-8759-8
  2. ^ Matthews, M.J.; Petitpas, G.; Aceves, S.M. (2011). "A study of spin isomer conversion kinetics in supercritical fluid hydrogen for cryogenic fuel storage technologies". Appl. Phys. Lett. 99 (8): 081906. Bibcode:2011ApPhL..99h1906M. doi:10.1063/1.3628453.
  3. ^ Chen, Judy Y.-C.; Li, Yongjun; Frunzi, Michael; Lei, Xuegong; Murata, Yasujiro; Lawler, Ronald G.; Turro, Nicholas (13 September 2013). "Nuclear spin isomers of guest molecules in H2@C60, H2O@C60 and other endofullerenes". Philosophical Transactions of the Royal Society A. 371 (1998). Bibcode:2013RSPTA.37110628C. doi:10.1098/rsta.2011.0628. PMID 23918710. S2CID 20443766.
  4. ^ Matsumoto, Mitsuru; Espenson, James H. (2005). "Kinetics of the Interconversion of Parahydrogen and Orthohydrogen Catalyzed by Paramagnetic Complex Ions". Journal of the American Chemical Society. 127 (32): 11447–11453. doi:10.1021/ja0524292. ISSN 0002-7863. PMID 16089474.
  5. ^ a b Aroulanda, Christie; Starovoytova, Larisa; Canet, Daniel (2007). "Longitudinal Nuclear Spin Relaxation ofOrtho- andPara-Hydrogen Dissolved in Organic Solvents". The Journal of Physical Chemistry A. 111 (42): 10615–10624. Bibcode:2007JPCA..11110615A. doi:10.1021/jp073162r. ISSN 1089-5639. PMID 17914761.