In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamically stable energy state (closer to thermodynamic equilibrium).[1][2] The sign convention for free energy change follows the general convention for thermodynamic measurements, in which a release of free energy from the system corresponds to a negative change in the free energy of the system and a positive change in the free energy of the surroundings.
Depending on the nature of the process, the free energy is determined differently. For example, the Gibbs free energy change is used when considering processes that occur under constant pressure and temperature conditions, whereas the Helmholtz free energy change is used when considering processes that occur under constant volume and temperature conditions. The value and even the sign of both free energy changes can depend upon the temperature and pressure or volume.
Because spontaneous processes are characterized by a decrease in the system's free energy, they do not need to be driven by an outside source of energy.
For cases involving an isolated system where no energy is exchanged with the surroundings, spontaneous processes are characterized by an increase in entropy.
A spontaneous reaction is a chemical reaction which is a spontaneous process under the conditions of interest.