Squeeze flow

Squeeze flow (also called squeezing flow, squeezing film flow, or squeeze flow theory) is a type of flow in which a material is pressed out or deformed between two parallel plates or objects. First explored in 1874 by Josef Stefan,[1] squeeze flow describes the outward movement of a droplet of material, its area of contact with the plate surfaces, and the effects of internal and external factors such as temperature, viscoelasticity, and heterogeneity of the material.[2] Several squeeze flow models exist to describe Newtonian and non-Newtonian fluids undergoing squeeze flow under various geometries and conditions. Numerous applications across scientific and engineering disciplines including rheometry, welding engineering, and materials science provide examples of squeeze flow in practical use.

  1. ^ Ullah, Hakeem; Khan, Muhammad Arif; Fiza, Mehreen; Ullah, Kashif; Ayaz, Muhammad; Al-Mekhlafi, Seham M. (2022-03-31). "Analytical and Numerical Analysis of the Squeezed Unsteady MHD Nanofluid Flow in the Presence of Thermal Radiation". Journal of Nanomaterials. 2022 (1): e1668206. doi:10.1155/2022/1668206. ISSN 1687-4110.
  2. ^ Engmann, J., Servais, C., & Burbidge, A. S. (2005). Squeeze flow theory and applications to rheometry: A review. Journal of Non-Newtonian Fluid Mechanics, 132(1-3), 1-27. doi:10.1016/j.jnnfm.2005.08.007