The stability of the Solar System is a subject of much inquiry in astronomy. Though the planets have historically been stable as observed, and will be in the "short" term, their weak gravitational effects on one another can add up in ways that are not predictable by any simple means.
For this reason (among others), the Solar System is chaotic in the technical sense defined by mathematical chaos theory,[1] and that chaotic behavior degrades even the most precise long-term numerical or analytic models for the orbital motion in the Solar System, so they cannot be valid beyond more than a few tens of millions of years into the past or future – about 1% its present age.[2]
The Solar System is stable on the time-scale of the existence of humans, and far beyond, given that it is unlikely any of the planets will collide with each other or be ejected from the system in the next few billion years,[3] and that Earth's orbit will be relatively stable.[4]
Since Newton's law of gravitation (1687), mathematicians and astronomers (such as Laplace, Lagrange, Gauss, Poincaré, Kolmogorov, V. Arnold, and J. Moser) have searched for evidence for the stability of the planetary motions, and this quest has led to many mathematical developments and several successive "proofs" of stability of the Solar System.[5]
hayes07
was invoked but never defined (see the help page).