Statistical shape analysis

Statistical shape analysis is an analysis of the geometrical properties of some given set of shapes by statistical methods. For instance, it could be used to quantify differences between male and female gorilla skull shapes, normal and pathological bone shapes, leaf outlines with and without herbivory by insects, etc. Important aspects of shape analysis are to obtain a measure of distance between shapes, to estimate mean shapes from (possibly random) samples, to estimate shape variability within samples, to perform clustering and to test for differences between shapes.[1][2] One of the main methods used is principal component analysis (PCA). Statistical shape analysis has applications in various fields, including medical imaging,[3] computer vision, computational anatomy, sensor measurement, and geographical profiling.[4]

  1. ^ I.L. Dryden & K.V. Mardia (1998). Statistical Shape Analysis. John Wiley & Sons. ISBN 978-0-471-95816-1.
  2. ^ H. Ziezold (1994). "Mean Figures and Mean Shapes Applied to Biological Figure and Shape Distributions in the Plane". Biometrical Journal. 36 (4). Biometrical Journal, 36, pp. 491–510.: 491–510. doi:10.1002/bimj.4710360409.
  3. ^ G. Zheng; S. Li; G. Szekely (2017). Statistical Shape and Deformation Analysis. Academic Press. ISBN 9780128104941.
  4. ^ S. Giebel (2011). Zur Anwendung der Formanalyse. AVM, M\"unchen.