In geometry, Steffen's polyhedron is a flexible polyhedron discovered (in 1978[1]) by and named after Klaus Steffen [de]. It is based on the Bricard octahedron, but unlike the Bricard octahedron its surface does not cross itself.[2] It has nine vertices, 21 edges, and 14 triangular faces.[3] Its faces can be decomposed into three subsets: two six-triangle-patches from a Bricard octahedron, and two more triangles (the central two triangles of the net shown in the illustration) that link these patches together.[4]
Although it has been claimed to be the simplest possible flexible polyhedron without self-crossings,[3] a 2024 preprint by Gallet et al. claims to construct a simpler non-self-crossing flexible polyhedron with only eight vertices.[6]