In decision theory and estimation theory, Stein's example (also known as Stein's phenomenon or Stein's paradox) is the observation that when three or more parameters are estimated simultaneously, there exist combined estimators more accurate on average (that is, having lower expected mean squared error) than any method that handles the parameters separately. It is named after Charles Stein of Stanford University, who discovered the phenomenon in 1955.[1]
An intuitive explanation is that optimizing for the mean-squared error of a combined estimator is not the same as optimizing for the errors of separate estimators of the individual parameters. In practical terms, if the combined error is in fact of interest, then a combined estimator should be used, even if the underlying parameters are independent. If one is instead interested in estimating an individual parameter, then using a combined estimator does not help and is in fact worse.