Streamlining theory

Genomic streamlining is a theory in evolutionary biology and microbial ecology that suggests that there is a reproductive benefit to prokaryotes having a smaller genome size with less non-coding DNA and fewer non-essential genes.[1][2] There is a lot of variation in prokaryotic genome size, with the smallest free-living cell's genome being roughly ten times smaller than the largest prokaryote.[3] Two of the free-living bacterial taxa with the smallest genomes are Prochlorococcus and Pelagibacter ubique,[4][5] both highly abundant marine bacteria commonly found in oligotrophic regions. Similar reduced genomes have been found in uncultured marine bacteria, suggesting that genomic streamlining is a common feature of bacterioplankton.[6] This theory is typically used with reference to free-living organisms in oligotrophic environments.[1]

  1. ^ a b Giovannoni SJ, Cameron Thrash J, Temperton B (August 2014). "Implications of streamlining theory for microbial ecology". The ISME Journal. 8 (8): 1553–65. Bibcode:2014ISMEJ...8.1553G. doi:10.1038/ismej.2014.60. PMC 4817614. PMID 24739623.
  2. ^ Sela I, Wolf YI, Koonin EV (October 2016). "Theory of prokaryotic genome evolution". Proceedings of the National Academy of Sciences of the United States of America. 113 (41): 11399–11407. Bibcode:2016PNAS..11311399S. doi:10.1073/pnas.1614083113. PMC 5068321. PMID 27702904.
  3. ^ Koonin EV, Wolf YI (December 2008). "Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world". Nucleic Acids Research. 36 (21): 6688–719. doi:10.1093/nar/gkn668. PMC 2588523. PMID 18948295.
  4. ^ Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ (August 2005). "Genome streamlining in a cosmopolitan oceanic bacterium". Science. 309 (5738): 1242–5. Bibcode:2005Sci...309.1242G. doi:10.1126/science.1114057. PMID 16109880. S2CID 16221415.
  5. ^ Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, Tandeau de Marsac N, Weissenbach J, Wincker P, Wolf YI, Hess WR (August 2003). "Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome". Proceedings of the National Academy of Sciences of the United States of America. 100 (17): 10020–5. doi:10.1073/pnas.1733211100. PMC 187748. PMID 12917486.
  6. ^ Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, Luo H, Wright JJ, Landry ZC, Hanson NW, Thompson BP, Poulton NJ, Schwientek P, Acinas SG, Giovannoni SJ, Moran MA, Hallam SJ, Cavicchioli R, Woyke T, Stepanauskas R (July 2013). "Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 110 (28): 11463–8. Bibcode:2013PNAS..11011463S. doi:10.1073/pnas.1304246110. PMC 3710821. PMID 23801761.