Strigolactone

Strigolactones are a group of chemical compounds produced by roots of plants.[1] Due to their mechanism of action, these molecules have been classified as plant hormones or phytohormones.[1] So far, strigolactones have been identified to be responsible for three different physiological processes: First, they promote the germination of parasitic organisms that grow in the host plant's roots, such as Striga lutea and other plants of the genus Striga.[1] Second, strigolactones are fundamental for the recognition of the plant by symbiotic fungi, especially arbuscular mycorrhizal fungi, because they establish a mutualistic association with these plants, and provide phosphate and other soil nutrients.[1] Third, strigolactones have been identified as branching inhibition hormones in plants; when present, these compounds prevent excess bud growing in stem terminals, stopping the branching mechanism in plants.[1]

General structure of strigolactones

Strigolactones comprise a diverse group, but they all have core common chemical structure,[1] as shown in the image to the right. The structure is based on a tricyclic lactone linked to a hydroxymethyl butenolide; the former is represented in the figure as the A-B-C part, while the latter is the D part of the molecule.[1] It is important to note that most strigolactones present variations in the ABC part, but the D ring is quite constant across the different species, which led researchers to suspect that the biological activity relies on this part of the molecule.[1] Different studies have demonstrated that the activity of the molecules is lost when the C-D section of the molecules is modified.[1]

Since strigolactones are involved in the signaling pathway required for germination of parasitic species (such as Striga sp.), they have been a proposed target to control pests and overgrowth of these parasitic organism.[2] Using a molecule similar to strigolactones could be the key to designing a chemical and biological mechanism to stop the colonization of a plant's root by parasitic plants.[2]

  1. ^ a b c d e f g h i Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, et al. (June 2015). "Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis". Plant & Cell Physiology. 56 (6): 1059–72. doi:10.1093/pcp/pcv028. PMID 25713176.
  2. ^ a b Waters MT, Gutjahr C, Bennett T, Nelson DC (April 2017). "Strigolactone Signaling and Evolution". Annual Review of Plant Biology. 68 (1): 291–322. doi:10.1146/annurev-arplant-042916-040925. PMID 28125281.