In graph theory, a strongly regular graph (SRG) is a regular graph G = (V, E) with v vertices and degree k such that for some given integers
Such a strongly regular graph is denoted by srg(v, k, λ, μ); its "parameters" are the numbers in (v, k, λ, μ). Its complement graph is also strongly regular: it is an srg(v, v − k − 1, v − 2 − 2k + μ, v − 2k + λ).
A strongly regular graph is a distance-regular graph with diameter 2 whenever μ is non-zero. It is a locally linear graph whenever λ = 1.