Structural formula

Skeletal structural formula of Vitamin B12. Many organic molecules are too complicated to be specified by a molecular formula.

The structural formula of a chemical compound is a graphic representation of the molecular structure (determined by structural chemistry methods), showing how the atoms are possibly arranged in the real three-dimensional space. The chemical bonding within the molecule is also shown, either explicitly or implicitly. Unlike other chemical formula types,[a] which have a limited number of symbols and are capable of only limited descriptive power, structural formulas provide a more complete geometric representation of the molecular structure. For example, many chemical compounds exist in different isomeric forms, which have different enantiomeric structures but the same molecular formula. There are multiple types of ways to draw these structural formulas such as: Lewis structures, condensed formulas, skeletal formulas, Newman projections, Cyclohexane conformations, Haworth projections, and Fischer projections.[2]

Several systematic chemical naming formats, as in chemical databases, are used that are equivalent to, and as powerful as, geometric structures. These chemical nomenclature systems include SMILES, InChI and CML. These systematic chemical names can be converted to structural formulas and vice versa, but chemists nearly always describe a chemical reaction or synthesis using structural formulas rather than chemical names, because the structural formulas allow the chemist to visualize the molecules and the structural changes that occur in them during chemical reactions. ChemSketch and ChemDraw are popular downloads/websites that allow users to draw reactions and structural formulas, typically in the Lewis Structure style.

  1. ^ Denise DeCooman (2022-04-08). "What are Chemical Formulas and How are They Used?". Study.com. sec. Chemical Formula Examples. Archived from the original on 2022-06-23.
  2. ^ Goodwin, W. M. (2007-04-13). "Structural formulas and explanation in organic chemistry". Foundations of Chemistry. 10 (2): 117–127. doi:10.1007/s10698-007-9033-2. ISSN 1386-4238. S2CID 93952251.


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).