Sturm's theorem

In mathematics, the Sturm sequence of a univariate polynomial p is a sequence of polynomials associated with p and its derivative by a variant of Euclid's algorithm for polynomials. Sturm's theorem expresses the number of distinct real roots of p located in an interval in terms of the number of changes of signs of the values of the Sturm sequence at the bounds of the interval. Applied to the interval of all the real numbers, it gives the total number of real roots of p.[1]

Whereas the fundamental theorem of algebra readily yields the overall number of complex roots, counted with multiplicity, it does not provide a procedure for calculating them. Sturm's theorem counts the number of distinct real roots and locates them in intervals. By subdividing the intervals containing some roots, it can isolate the roots into arbitrarily small intervals, each containing exactly one root. This yields the oldest real-root isolation algorithm, and arbitrary-precision root-finding algorithm for univariate polynomials.

For computing over the reals, Sturm's theorem is less efficient than other methods based on Descartes' rule of signs. However, it works on every real closed field, and, therefore, remains fundamental for the theoretical study of the computational complexity of decidability and quantifier elimination in the first order theory of real numbers.

The Sturm sequence and Sturm's theorem are named after Jacques Charles François Sturm, who discovered the theorem in 1829.[2]

  1. ^ (Basu, Pollack & Roy 2006)
  2. ^ O'Connor, John J.; Robertson, Edmund F. "Sturm's theorem". MacTutor History of Mathematics Archive. University of St Andrews.