Tectonic erosion or subduction erosion is the loss of crust from an overriding tectonic plate due to subduction.[1] Two types of tectonic erosion exist: frontal erosion at the outer margin of a plate and basal erosion at the base of the plate's crust.[1] Basal erosion causes a thinning of the overriding plate.[2] When frontal tectonic erosion consumes a crustal block at the outer margin it may induce a domino effect on upper crustal tectonics causing the remaining blocks to fault and tilt to fill the “gap” left by the consumed block.[2] Subduction erosion is believed to be enhanced by high convergence rates and low sediment supply to the trench.[1]
Before the Neoproterozoic, subduction erosion rates were probably higher than at present due to higher convergence rates. A scarcity of blueschists from this time seems to support this view.[1] However, this assertion is arguably wrong because the earliest oceanic crust would have contained more magnesium than today's crust and, therefore, would have formed greenschist-like rocks at blueschist facies.[3]
The following features and processes have been associated with subduction erosion:
Regional subsidence and transgression: The Miocenetransgression of southern Chile has been suggested to have been caused by basal tectonic erosion.[4] Subduction erosion does not explain the Miocene transgression further inland in Patagonia.[5]
^ abcNiemeyer, Hans; González, Gabriel; Martínez-De Los Ríos, Edmundo (1996). "Evolución tectónica cenozoica del margen continental activo de Antofagasta, norte de Chile". Revista Geológica de Chile (in Spanish). 23 (2): 165–186.
^Encinas, Alfonso; Finger, Kenneth L.; Buatois, Luis A.; Peterson, Dawn E. (2012). "Major forearc subsidence and deep-marine Miocene sedimentation in the present Coastal Cordillera and Longitudinal Depression of south-central Chile (38°30'S – 41°45'S)". Geological Society of America Bulletin. 124 (7–8): 1262–1277. doi:10.1130/b30567.1. hdl:10533/135235.
^Charrier, Reynaldo; Pinto, Luisa; Rodríguez, María Pía (2006). "3. Tectonostratigraphic evolution of the Andean Orogen in Chile". In Moreno, Teresa; Gibbons, Wes (eds.). Geology of Chile. Geological Society of London. pp. 21, 45–46. ISBN9781862392199.