In geometric group theory, a discipline of mathematics, subgroup distortion measures the extent to which an overgroup can reduce the complexity of a group's word problem.[1] Like much of geometric group theory, the concept is due to Misha Gromov, who introduced it in 1993.[2]
Formally, let S generate group H, and let G be an overgroup for H generated by S ∪ T. Then each generating set defines a word metric on the corresponding group; the distortion of H in G is the asymptotic equivalence class of the function where BX(x, r) is the ball of radius r about center x in X and diam(S) is the diameter of S.[2]: 49
A subgroup with bounded distortion is called undistorted, and is the same thing as a quasi-isometrically embedded subgroup.[3]