A super-Poulet number is a Poulet number, or pseudoprime to base 2, whose every divisor d divides
For example, 341 is a super-Poulet number: it has positive divisors {1, 11, 31, 341} and we have:
When is not prime, then it and every divisor of it are a pseudoprime to base 2, and a super-Poulet number.
The super-Poulet numbers below 10,000 are (sequence A050217 in the OEIS):
n | |
---|---|
1 | 341 = 11 × 31 |
2 | 1387 = 19 × 73 |
3 | 2047 = 23 × 89 |
4 | 2701 = 37 × 73 |
5 | 3277 = 29 × 113 |
6 | 4033 = 37 × 109 |
7 | 4369 = 17 × 257 |
8 | 4681 = 31 × 151 |
9 | 5461 = 43 × 127 |
10 | 7957 = 73 × 109 |
11 | 8321 = 53 × 157 |