Superconducting radio frequency

An SRF technology single-cell Niobium cavity CAD image with cross section, as used in the KEK-B[1] accelerator.

Superconducting radio frequency (SRF) science and technology involves the application of electrical superconductors to radio frequency devices. The ultra-low electrical resistivity of a superconducting material allows an RF resonator to obtain an extremely high quality factor, Q. For example, it is commonplace for a 1.3 GHz niobium SRF resonant cavity at 1.8 kelvins to obtain a quality factor of Q=5×1010. Such a very high Q resonator stores energy with very low loss and narrow bandwidth. These properties can be exploited for a variety of applications, including the construction of high-performance particle accelerator structures.

  1. ^ Akai, K; Akasaka, N; Ebihara, K; Ezura, E; Furuya, T; et al. (2003). "RF systems for the KEK B-Factory" (PDF). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 499 (1). Elsevier BV: 45–65. Bibcode:2003NIMPA.499...45A. doi:10.1016/s0168-9002(02)01773-4. ISSN 0168-9002.