Technique for comparing quantum states
Circuit implementing the swap test between two states
|
ϕ
⟩
{\displaystyle |\phi \rangle }
and
|
ψ
⟩
{\displaystyle |\psi \rangle }
The swap test is a procedure in quantum computation that is used to check how much two quantum states differ, appearing first in the work of Barenco et al.[ 1]
and later rediscovered by Harry Buhrman , Richard Cleve , John Watrous , and Ronald de Wolf .[ 2] It appears commonly in quantum machine learning , and is a circuit used for proofs-of-concept in implementations of quantum computers.[ 3] [ 4]
Formally, the swap test takes two input states
|
ϕ
⟩
{\displaystyle |\phi \rangle }
and
|
ψ
⟩
{\displaystyle |\psi \rangle }
and outputs a Bernoulli random variable that is 1 with probability
1
2
−
1
2
|
⟨
ψ
|
ϕ
⟩
|
2
{\displaystyle \textstyle {\frac {1}{2}}-{\frac {1}{2}}{|\langle \psi |\phi \rangle |}^{2}}
(where the expressions here use bra–ket notation ). This allows one to, for example, estimate the squared inner product between the two states,
|
⟨
ψ
|
ϕ
⟩
|
2
{\displaystyle {|\langle \psi |\phi \rangle |}^{2}}
, to
ε
{\displaystyle \varepsilon }
additive error by taking the average over
O
(
1
ε
2
)
{\displaystyle O(\textstyle {\frac {1}{\varepsilon ^{2}}})}
runs of the swap test.[ 5] This requires
O
(
1
ε
2
)
{\displaystyle O(\textstyle {\frac {1}{\varepsilon ^{2}}})}
copies of the input states. The squared inner product roughly measures "overlap" between the two states, and can be used in linear-algebraic applications, including clustering quantum states.[ 6]
^
Adriano Barenco , André Berthiaume , David Deutsch , Artur Ekert , Richard Jozsa , Chiara Macchiavello (1997). "Stabilization of Quantum Computations by Symmetrization". SIAM Journal on Computing . 26 (5): 1541–1557. arXiv :quant-ph/9604028 . doi :10.1137/S0097539796302452 .{{cite journal }}
: CS1 maint: multiple names: authors list (link )
^
Harry Buhrman , Richard Cleve , John Watrous , Ronald de Wolf (2001). "Quantum Fingerprinting". Physical Review Letters . 87 (16): 167902. arXiv :quant-ph/0102001 . Bibcode :2001PhRvL..87p7902B . doi :10.1103/PhysRevLett.87.167902 . PMID 11690244 . S2CID 1096490 .{{cite journal }}
: CS1 maint: multiple names: authors list (link )
^ Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco (2015-04-03). "An introduction to quantum machine learning" . Contemporary Physics . 56 (2): 172–185. arXiv :1409.3097 . Bibcode :2015ConPh..56..172S . doi :10.1080/00107514.2014.964942 . ISSN 0010-7514 . S2CID 119263556 .
^ Kang Min-Sung, Heo Jino, Choi Seong-Gon, Moon Sung, Han Sang-Wook (2019). "Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect" . Scientific Reports . 9 (1): 6167. Bibcode :2019NatSR...9.6167K . doi :10.1038/s41598-019-42662-4 . PMC 6468003 . PMID 30992536 . {{cite journal }}
: CS1 maint: multiple names: authors list (link )
^ de Wolf, Ronald (2021-01-20). "Quantum Computing: Lecture Notes". pp. 117–119, 122. arXiv :1907.09415 [quant-ph ].
^ Wiebe, Nathan; Kapoor, Anish; Svore, Krysta M. (1 March 2015). "Quantum Algorithms for Nearest-Neighbor Methods for Supervised and Unsupervised Learning" . Quantum Information and Computation . 15 (3–4). Rinton Press, Incorporated: 316–356. arXiv :1401.2142 . doi :10.26421/QIC15.3-4-7 . S2CID 37339559 .