In nuclear physics, the symmetry energy reflects the variation of the binding energy of the nucleons in the nuclear matter depending on its neutron to proton ratio as a function of baryon density. Symmetry energy is an important parameter in the equation of state describing the nuclear structure of heavy nuclei and neutron stars.[1][2][3][4]
- ^ Baldo, M.; Burgio, G. F. (November 2016). "The nuclear symmetry energy". Progress in Particle and Nuclear Physics. 91: 203–258. arXiv:1606.08838. Bibcode:2016PrPNP..91..203B. doi:10.1016/j.ppnp.2016.06.006. S2CID 119216703.
- ^ Tsang, M. B.; Zhang, Y.; Danielewicz, P.; Famiano, M.; Li, Z.; Lynch, W. G.; Steiner, A. W. (2009). "Constraints on the Density Dependence of the Symmetry Energy". Physical Review Letters. 102 (12): 122701. arXiv:0811.3107. Bibcode:2009PhRvL.102l2701T. doi:10.1103/PhysRevLett.102.122701. PMID 19392271.
- ^ Tsang, M. B.; et al. (September 2010). "Constraints on the Density Dependence of the Symmetry Energy". International Journal of Modern Physics E. 19 (8n09): 1631–1638. arXiv:0811.3107. Bibcode:2010IJMPE..19.1631T. doi:10.1142/S0218301310016041. ISSN 0218-3013.
- ^ Lattimer, J. M. (January 2023). "Constraints on Nuclear Symmetry Energy Parameters". Particles. 6 (12): 30–56. arXiv:2301.03666. Bibcode:2023Parti...6...30L. doi:10.3390/particles6010003.