Synaptic scaling

In neuroscience, synaptic scaling (or homeostatic scaling) is a form of homeostatic plasticity, in which the brain responds to chronically elevated activity in a neural circuit with negative feedback, allowing individual neurons to reduce their overall action potential firing rate.[1] Where Hebbian plasticity mechanisms modify neural synaptic connections selectively, synaptic scaling normalizes all neural synaptic connections[2] by decreasing the strength of each synapse by the same factor (multiplicative change), so that the relative synaptic weighting of each synapse is preserved.[1]

  1. ^ a b Siddoway, Benjamin; Hou, Hailog; Xia, Houhui (March 2014). "Molecular mechanisms of homeostatic synaptic downscaling". Neuropharmacology. 78: 38–44. doi:10.1016/j.neuropharm.2013.07.009. PMC 8262101. PMID 23911745.
  2. ^ Turrigiano, G. G.; Nelson, S. B. (2000). "Hebb and homeostasis in neuronal plasticity". Current Opinion in Neurobiology. 10 (3): 358–64. doi:10.1016/s0959-4388(00)00091-x. PMID 10851171. S2CID 20462620.