Tectitethya crypta

Tectitethya crypta
Tectitethya crypta
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Porifera
Class: Demospongiae
Order: Tethyida
Family: Tethyidae
Genus: Tectitethya
Species:
T. crypta
Binomial name
Tectitethya crypta
Synonyms[1]
  • Cryptotethya crypta de Laubenfels, 1949
  • Tethya crypta (de Laubenfels, 1949)

Tectitethya crypta is a species of demosponge belonging to the family Tethyidae.[1] Its classified family is characterized by fourteen different known genera, one of them being Tectitethya.[2] It is a massive, shallow-water sponge found in the Caribbean Sea.[3][4] This sponge was first discovered by Werner Bergmann in 1945 and later classified by de Laubenfels in 1949. It is located in reef areas situated on softer substrates such as sand or mud.[5][6] Oftentimes, it is covered in sand and algae.[3][4] This results in an appearance that is cream colored/ gray colored; however, when the animal is washed free of its sediment coverings, its body plan appears more green and gray. It's characterized with ostia peaking out of its body cavity, with the ability to abruptly open or close, changing its desired water flow rate through its mesohyl.

This sponge is widely known for its contributions to the field of medicine as a source for potent nucleoside analogues used in treating H.I.V, Acute Myeloid Leukemia, pancreatic cancer, Ebola, and others. The nucleosides spongothymidine and spongouridine were isolated from this sponge, providing the basis for anti-viral drugs and anti-cancer drugs.[3][4] Vidarabine, an antiviral drug, was derived from these compounds.[7] The discovery of these nucleosides also led to the development of cytarabine for clinical use in the treatment of leukemia and lymphoma.[8] Gemcitabine, a fluorinated derivative of cytarabine, is used to treat pancreatic, breast, bladder, and non-small-cell lung cancer.[8] Holding such valuable compounds, free-living within the animal, T. crypta has shaped the present and future world of medicine.

  1. ^ a b van Soest, R. (2008). Van Soest RW, Boury-Esnault N, Hooper JN, Rützler K, de Voogd NJ, de Glasby BA, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M, Vacelet J (eds.). "Tectitethya crypta (de Laubenfels, 1949)". World Porifera database. World Register of Marine Species. Retrieved 8 April 2017.
  2. ^ Sarà, Michele (2002), Hooper, John N. A.; Van Soest, Rob W. M.; Willenz, Philippe (eds.), "Family Tethyidae Gray, 1848", Systema Porifera, Boston, MA: Springer US, pp. 245–265, doi:10.1007/978-1-4615-0747-5_26, ISBN 978-0-306-47260-2, retrieved 2020-12-03
  3. ^ a b c Cerrano, Carlo; Pansini, Maurizio; Valisano, Laura; Calcinai, Barbara; Sarà, Michele; Bavestrello, Giorgio (2004). "Lagoon sponges from Carrie Bow Cay (Belize): Ecological benefits of selective sediment incorporation". Bollettino dei Musei e degli Istituti Biologici dell'Università di Genova. 68: 239–252. Retrieved 23 June 2012.
  4. ^ a b c Patricia R. Bergquist (1978). Sponges. University of California Press. p. 205. ISBN 978-0-520-03658-1. Retrieved 23 June 2012.
  5. ^ Pérez, Thierry; Díaz, Maria-Cristina; Ruiz, César; Cóndor-Luján, Baslavi; Klautau, Michelle; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Zea, Sven; Pomponi, Shirley A.; Thacker, Robert W.; Carteron, Sophie (2017-03-22). "How a collaborative integrated taxonomic effort has trained new spongiologists and improved knowledge of Martinique Island (French Antilles, eastern Caribbean Sea) marine biodiversity". PLOS ONE. 12 (3): e0173859. Bibcode:2017PLoSO..1273859P. doi:10.1371/journal.pone.0173859. ISSN 1932-6203. PMC 5362083. PMID 28329020.
  6. ^ O’Donnell, Nicole (2012-06-01). "Book Review: Gulf of Mexico Origin, Waters, and Biota: Biodiversity (Volume 1)". Aquatic Mammals. 38 (2): 223. doi:10.1578/am.38.2.2012.223. ISSN 0167-5427.
  7. ^ Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P. (2010). "Antiviral lead compounds from marine sponges". Marine Drugs. 8 (10): 2619–2638. doi:10.3390/md8102619. PMC 2992996. PMID 21116410.
  8. ^ a b Schwartsmann, G; Brondani da Rocha, A; Berlinck, RG; Jimeno, J (April 2001). "Marine organisms as a source of new anticancer agents". Lancet Oncology. 2 (4): 221–225. doi:10.1016/s1470-2045(00)00292-8. PMID 11905767.