Tectonics

Tectonics (from Latin tectonicus; from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building')[1] are the processes that result in the structure and properties of the Earth's crust and its evolution through time. The field of planetary tectonics extends the concept to other planets and moons.[2][3]

These processes include those of mountain-building, the growth and behavior of the strong, old cores of continents known as cratons, and the ways in which the relatively rigid plates that constitute the Earth's outer shell interact with each other. Principles of tectonics also provide a framework for understanding the earthquake and volcanic belts that directly affect much of the global population.

Tectonic studies are important as guides for economic geologists searching for fossil fuels and ore deposits of metallic and nonmetallic resources. An understanding of tectonic principles can help geomorphologists to explain erosion patterns and other Earth-surface features.[4]

  1. ^ Harper, Douglas. "tectonic". Online Etymology Dictionary.
  2. ^ Geologists (as distinct from architects) may define tectonics as "the architecture of the Earth's crust" - O'Hara, Kieran D. (19 April 2018). A Brief History of Geology. Cambridge: Cambridge University Press. ISBN 9781107176188. Retrieved 23 March 2023. The words tectonics and architecture are derived from the same Greek root, and tectonics is defined as the architecture of the Earth's crust.
  3. ^ Watters, Thomas R.; Schultz, Richard A. (2010). "Planetary tectonics: introduction". In Watters, Thomas R.; Schultz, Richard A. (eds.). Planetary Tectonics. Cambridge Planetary Science, ISSN 0265-3044 - Volume 11. Cambridge: Cambridge University Press. p. 2. ISBN 9780521765732. Retrieved 23 March 2023. Since the 1960s, an armada of exploratory spacecraft have identified widespread evidence of tectonism on all the terrestrial planets, most of the satellites of the outer planets, and on a number of asteroids. Tectonic landforms on large and small bodies in the solar system are as ubiquitous as impact craters.
  4. ^ Anderson, Robert S.; Burbank, Douglas W. (2 November 2011) [2001]. "Rates of erosion and uplift". Tectonic Geomorphology (2 ed.). Chichester, West Sussex: John Wiley & Sons. ISBN 9781444345049. Retrieved 23 March 2023.