Tryptophan metabolism by human gastrointestinal microbiota ( )
|
To transclude this template as is, use:
{{Tryptophan metabolism by human microbiota}}
To transclude this template with a header or with a different alignment, use:
{{Tryptophan metabolism by human microbiota | align=(left/right/center) | header=(desired header) | header align=(left/right/center) | header background=(color hex code)}}
The image's alternative text (i.e. |alt=
parameter) is "Tryptophan metabolism diagram".
Lactobacillus spp. convert tryptophan to indole-3-aldehyde (I3A) through unidentified enzymes [125]. Clostridium sporogenes convert tryptophan to IPA [6], likely via a tryptophan deaminase. ... IPA also potently scavenges hydroxyl radicals
Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes.
[Indole-3-propionic acid (IPA)] has previously been identified in the plasma and cerebrospinal fluid of humans, but its functions are not known. ... In kinetic competition experiments using free radical-trapping agents, the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine considered to be the most potent naturally occurring scavenger of free radicals. In contrast with other antioxidants, IPA was not converted to reactive intermediates with pro-oxidant activity.