Names | |
---|---|
Other names
thallium trioxide, thallium sesquioxide
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.013.846 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties[1] | |
Tl2O3 | |
Molar mass | 456.76 g/mol |
Appearance | dark brown solid |
Density | 10.19 g/cm3, solid (22 °C) |
Melting point | 717 °C (1,323 °F; 990 K) |
Boiling point | 875 °C (1,607 °F; 1,148 K) (decomposes) |
insoluble | |
+76.0·10−6 cm3/mol | |
Structure | |
Cubic, (Bixbyite) cI80[2] | |
Ia3 (No. 206) | |
Hazards | |
GHS labelling:[3] | |
Danger | |
H300+H330, H373, H411 | |
P273, P301+P310+P330, P304+P340+P310, P314 | |
NFPA 704 (fire diamond) | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose)
|
44 mg/kg (oral, rat) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Thallium(III) oxide, also known as thallic oxide, is a chemical compound of thallium and oxygen. It occurs in nature as the rare mineral avicennite.[4] Its structure is related to that of Mn2O3 which has a bixbyite like structure. Tl2O3 is metallic with high conductivity and is a degenerate n-type semiconductor which may have potential use in solar cells.[5] A method of producing Tl2O3 by MOCVD is known.[6] Any practical use of thallium(III) oxide will always have to take account of thallium's poisonous nature. Contact with moisture and acids may form poisonous thallium compounds.