Thermal energy storage (TES) is the storage of thermal energy for later reuse. Employing widely different technologies, it allows surplus thermal energy to be stored for hours, days, or months. Scale both of storage and use vary from small to large – from individual processes to district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer cooling (Seasonal thermal energy storage). Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.[4]
Other sources of thermal energy for storage include heat or cold produced with heat pumps from off-peak, lower cost electric power, a practice called peak shaving; heat from combined heat and power (CHP) power plants; heat produced by renewable electrical energy that exceeds grid demand and waste heat from industrial processes. Heat storage, both seasonal and short term, is considered an important means for cheaply balancing high shares of variable renewable electricity production and integration of electricity and heating sectors in energy systems almost or completely fed by renewable energy.[5][6][7][8]
^Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; Hvelplund, F.K. (2015). "Smart Energy Systems for coherent 100% renewable energy and transport solutions". Applied Energy. 145: 139–54. Bibcode:2015ApEn..145..139M. doi:10.1016/j.apenergy.2015.01.075.
^Henning, Hans-Martin; Palzer, Andreas (2014). "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology". Renewable and Sustainable Energy Reviews. 30: 1003–18. Bibcode:2014RSERv..30.1003H. doi:10.1016/j.rser.2013.09.012.