Members of the genus Thermococcus are typically irregularly shaped coccoid species, ranging in size from 0.6 to 2.0 μm in diameter.[2] Some species of Thermococcus are immobile, and some species have motility, using flagella as their main mode of movement.[citation needed] These flagella typically exist at a specific pole of the organism.[citation needed] This movement has been seen at room or at high temperatures, depending on the specific organism.[3] In some species, these microorganisms can aggregate and form white-gray plaques.[4] Species under Thermococcus typically thrive at temperatures between 60 and 105 °C,[5] either in the presence of black smokers (hydrothermal vents), or freshwater springs.[6] Species in this genus are strictly anaerobes,[7][8] and are thermophilic,[2][7] found in a variety depths, such as in hydrothermal vents 2500m below the ocean surface,[9] but also centimeters below the water surface in geothermal springs.[10] These organisms thrive at pH levels of 5.6-7.9.[11] Members of this genus have been found in many hydrothermal vent systems in the world, including from the seas of Japan,[12] to off the coasts of California.[13]Sodium Chloride salt is typically present in these locations at 1%-3% concentration,[8] but is not a required substrate for these organisms,[14][15] as one study showed Thermococcus members living in fresh hot water systems in New Zealand,[6] but they do require a low concentration of lithium ions for growth.[16]Thermococcus members are described as heterotrophic, chemotrophic,[2][17][18] and are organotrophic sulfanogens; using elemental sulfur and carbon sources including amino acids, carbohydrates, and organic acids such as pyruvate.[17][18][19]
^Tagashira K, Fukuda W, Matsubara M, Kanai T, Atomi H, Imanaka T (January 2013). "Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis". Extremophiles. 17 (1): 153–60. doi:10.1007/s00792-012-0504-6. PMID23224520. S2CID15924402.
^Tae-Yang Jung, Y.-S. K., Byoung-Ha Oh, and Euijeon Woo (2012). "Identification of a novel ligand binding site in phosphoserine phosphatase from the hyperthermophilic archaeon Thermococcus onnurineus." Wiley Periodicals: 11.
^Cite error: The named reference twentynine was invoked but never defined (see the help page).
^ abAntoine E, Guezennec J, Meunier JR, Lesongeur F, Barbier G (1995). "Isolation and Characterization of Extremely Thermophilic Archaebacteria Related to the Genus Thermococcus from Deep-Sea Hydrothermal Guaymas Basin". Current Microbiology. 31 (3): 7. doi:10.1007/bf00293552. S2CID25215530.
^Hetzer A, Morgan HW, McDonald IR, Daughney CJ (July 2007). "Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand". Extremophiles. 11 (4): 605–14. doi:10.1007/s00792-007-0073-2. PMID17426919. S2CID24239907.
^Cui Z, Wang Y, Pham BP, Ping F, Pan H, Cheong GW, et al. (July 2012). "High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1". Extremophiles. 16 (4): 619–25. doi:10.1007/s00792-012-0461-0. PMID22622648. S2CID17109990.
^Uehara R, Tanaka S, Takano K, Koga Y, Kanaya S (November 2012). "Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon". Extremophiles. 16 (6): 841–51. doi:10.1007/s00792-012-0479-3. PMID22996828. S2CID10924828.
^ abYuusuke Tokooji, T. S., Shinsuke Fujiwara, Tadayuki Imanaka and Haruyuki Atomi (2013). "Genetic Examination of Initial Amino Acid Oxidation and Glutamate Catabolism in the Hyperthermophilic Archaeon Thermococcus kodakarensis." Journal of Bacteriology: 10.
^Atomi H, Tomita H, Ishibashi T, Yokooji Y, Imanaka T (February 2013). "CoA biosynthesis in archaea". Biochemical Society Transactions. 41 (1): 427–31. doi:10.1042/bst20120311. PMID23356323.