Electrochemical cell in which a temperature difference produces a voltage
In electrochemistry, a thermogalvanic cell is a kind of galvanic cell in which heat is employed to provide electrical power directly.[1][2] These cells are electrochemical cells in which the two electrodes are deliberately maintained at different temperatures. This temperature difference generates a potential difference between the electrodes.[3][4] The electrodes can be of identical composition and the electrolyte solution homogeneous. This is usually the case in these cells.[5] This is in contrast to galvanic cells in which electrodes and/or solutions of different compositions provide the electromotive potential. As long as there is a difference in temperature between the electrodes a current will flow through the circuit. A thermogalvanic cell can be seen as analogous to a concentration cell but instead of running on differences in the concentration/pressure of the reactants they make use of differences in the "concentrations" of thermal energy.[6][7][8] The principal application of thermogalvanic cells is the production of electricity from low-temperature heat sources (waste heat and solar heat). Their energetic efficiency is low, in the range of 0.1% to 1% for conversion of heat into electricity.[7]
^Chum, HL; Osteryoung, RA (1980). “Review of thermally regenerative electrochemical systems. Volume 1: Synopsis and executive summary”. Solar Energy Research Institute pp. 35–40.
^Quickenden, TI; Vernon, CF (1986). “Thermogalvanic conversion of heat to electricity”. Solar Energy 36 (1): 63–72.
^Cite error: The named reference Agar1963 was invoked but never defined (see the help page).
^Zito Jr, R (1963). “Thermogalvanic energy conversion”. AIAA J 1 (9): 2133–8.
^Chum, HL; Osteryoung, RA (1981). “Review of thermally regenerative electrochemical systems. Volume 2”. Solar Energy Research Institute pp. 115–148.
^Tester, JW (1992). “Evaluation of thermogalvanic cells for the conversion of heat to electricity”. Report to Crucible Ventures. Department of Chemical Engineering and Energy Laboratory, Massachusetts Institute of Technologogy, Cambridge, Massachusetts. MIT-EL 92-007.
^ abQuickenden, TI; Mua, Y (1995). “A review of power generation in aqueous thermogalvanic cells”. J Electrochem Soc 142 (11): 3985–94.
^Gunawan, A; Lin, CH; Buttry, DA; Mujica, V; Taylor, RA; Prasher, RS; Phelan, PE (2013). “Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments”. Nanoscale Microscale Thermophys Eng 17: 304–23. doi: 10.1080/15567265.2013.776149