Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions ("first generation") and thin film cells ("second generation"). Common third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or gallium arsenide, while more theoretical developments include frequency conversion, (i.e. changing the frequencies of light that the cell cannot use to light frequencies that the cell can use - thus producing more power), hot-carrier effects and other multiple-carrier ejection techniques.[1][2][3][4][5]
Emerging photovoltaics include:
The achievements in the research of perovskite cells, especially, have received tremendous attention in the public as their research efficiencies recently soared above 20 percent. They also offer a wide spectrum of low-cost applications.[6][7][8] In addition, another emerging technology, concentrator photovoltaics (CPV), uses high-efficient, multi-junction solar cells in combination with optical lenses and a tracking system.