Third-generation photovoltaic cell

Third-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions ("first generation") and thin film cells ("second generation"). Common third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or gallium arsenide, while more theoretical developments include frequency conversion, (i.e. changing the frequencies of light that the cell cannot use to light frequencies that the cell can use - thus producing more power), hot-carrier effects and other multiple-carrier ejection techniques.[1][2][3][4][5]

Emerging photovoltaics include:

The achievements in the research of perovskite cells, especially, have received tremendous attention in the public as their research efficiencies recently soared above 20 percent. They also offer a wide spectrum of low-cost applications.[6][7][8] In addition, another emerging technology, concentrator photovoltaics (CPV), uses high-efficient, multi-junction solar cells in combination with optical lenses and a tracking system.

  1. ^ Shockley, W.; Queisser, H. J. (1961). "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells". Journal of Applied Physics. 32 (3): 510. Bibcode:1961JAP....32..510S. doi:10.1063/1.1736034.
  2. ^ Luque, Antonio; López Araujo, Gerardo (1990). Physical Limitations to Photovoltaic Energy Conversion. Bristol: Adam Hilger. ISBN 0-7503-0030-2.
  3. ^ Green, M. A. (2001). "Third generation photovoltaics: Ultra-high conversion efficiency at low cost". Progress in Photovoltaics: Research and Applications. 9 (2): 123–135. doi:10.1002/pip.360.
  4. ^ Martí, A.; Luque, A. (1 September 2003). Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization. CRC Press. ISBN 978-1-4200-3386-1.
  5. ^ Conibeer, G. (2007). "Third-generation photovoltaics". Materials Today. 10 (11): 42–50. doi:10.1016/S1369-7021(07)70278-X.
  6. ^ "A new stable and cost-cutting type of perovskite solar cell". PHYS.org. 17 July 2014. Retrieved 4 August 2015.
  7. ^ "Spray-deposition steers perovskite solar cells towards commercialisation". ChemistryWorld. 29 July 2014. Retrieved 4 August 2015.
  8. ^ "Perovskite Solar Cells". Ossila. Retrieved 4 August 2015.