In computer science, three-address code[1] (often abbreviated to TAC or 3AC) is an intermediate code used by optimizing compilers to aid in the implementation of code-improving transformations. Each TAC instruction has at most three operands and is typically a combination of assignment and a binary operator. For example, t1 := t2 + t3
. The name derives from the use of three operands in these statements even though instructions with fewer operands may occur.
Since three-address code is used as an intermediate language within compilers, the operands will most likely not be concrete memory addresses or processor registers, but rather symbolic addresses that will be translated into actual addresses during register allocation. It is also not uncommon that operand names are numbered sequentially since three-address code is typically generated by the compiler.
A refinement of three-address code is A-normal form (ANF).
{{cite book}}
: CS1 maint: multiple names: authors list (link)