In mathematics, a Thue equation is a Diophantine equation of the form
where is an irreducible bivariate form of degree at least 3 over the rational numbers, and is a nonzero rational number. It is named after Axel Thue, who in 1909 proved that a Thue equation can have only finitely many solutions in integers and , a result known as Thue's theorem.[1]
The Thue equation is solvable effectively: there is an explicit bound on the solutions , of the form where constants and depend only on the form . A stronger result holds: if is the field generated by the roots of , then the equation has only finitely many solutions with and integers of , and again these may be effectively determined.[2]