Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS)[1] that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible via TERS,[2] with routine demonstrations of nanometer spatial resolution under ambient laboratory conditions,[3] or better[4] at ultralow temperatures and high pressure.
The maximum resolution achievable using an optical microscope, including Raman microscopes, is limited by the Abbe limit, which is approximately half the wavelength of the incident light. Furthermore, with SERS spectroscopy the signal obtained is the sum of a relatively large number of molecules. TERS overcomes these limitations as the Raman spectrum obtained originates primarily from the molecules within a few tens of nanometers of the tip.
Although the antennas' electric near-field distributions are commonly understood to determine the spatial resolution, recent experiments showing subnanometer-resolved optical images put this understanding into question.[2] This is because such images enter a regime in which classical electrodynamical descriptions might no longer be applicable and quantum plasmonic[5] and atomistic[6] effects could become relevant.
^Sonntag, Matthew D.; Pozzi, Eric A.; Jiang, Nan; Hersam, Mark C.; Van Duyne, Richard P. (18 September 2014). "Recent Advances in Tip-Enhanced Raman Spectroscopy". The Journal of Physical Chemistry Letters. 5 (18): 3125–3130. doi:10.1021/jz5015746. PMID26276323.