Tissue transglutaminase

TGM2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTGM2, G-ALPHA-h, GNAH, HEL-S-45, TG2, TGC, TG(C), transglutaminase 2, G(h), hTG2, tTG
External IDsOMIM: 190196; MGI: 98731; HomoloGene: 3391; GeneCards: TGM2; OMA:TGM2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004613
NM_198951
NM_001323316
NM_001323317
NM_001323318

NM_009373

RefSeq (protein)

NP_001310245
NP_001310246
NP_001310247
NP_004604
NP_945189

NP_033399

Location (UCSC)Chr 20: 38.13 – 38.17 MbChr 2: 157.96 – 157.99 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Protein-glutamine gamma-glutamyltransferase
Identifiers
EC no.2.3.2.13
CAS no.80146-85-6
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

Tissue transglutaminase (abbreviated as tTG or TG2) is a 78-kDa, calcium-dependent enzyme (EC 2.3.2.13) of the protein-glutamine γ-glutamyltransferases family (or simply transglutaminase family).[5][6] Like other transglutaminases, it crosslinks proteins between an ε-amino group of a lysine residue and a γ-carboxamide group of glutamine residue, creating an inter- or intramolecular bond that is highly resistant to proteolysis (protein degradation). Aside from its crosslinking function, tTG catalyzes other types of reactions including deamidation, GTP-binding/hydrolyzing, and isopeptidase activities.[7] Unlike other members of the transglutaminase family, tTG can be found both in the intracellular and the extracellular spaces of various types of tissues and is found in many different organs including the heart, the liver, and the small intestine. Intracellular tTG is abundant in the cytosol but smaller amounts can also be found in the nucleus and the mitochondria.[6] Intracellular tTG is thought to play an important role in apoptosis.[8] In the extracellular space, tTG binds to proteins of the extracellular matrix (ECM),[9] binding particularly tightly to fibronectin.[10] Extracellular tTG has been linked to cell adhesion, ECM stabilization, wound healing, receptor signaling, cellular proliferation, and cellular motility.[6]

tTG is the autoantigen in celiac disease, a lifelong illness in which the consumption of dietary gluten causes a pathological immune response resulting in the inflammation of the small intestine and subsequent villous atrophy.[11][12][13] It has also been implicated in the pathophysiology of many other diseases, including such as many different cancers and neurogenerative diseases.[14]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000198959Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000037820Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Cite error: The named reference Kiraly was invoked but never defined (see the help page).
  6. ^ a b c Cite error: The named reference Klock was invoked but never defined (see the help page).
  7. ^ Cite error: The named reference Facchiano was invoked but never defined (see the help page).
  8. ^ Cite error: The named reference McConkey was invoked but never defined (see the help page).
  9. ^ Cite error: The named reference Lortat-Jacob was invoked but never defined (see the help page).
  10. ^ Cite error: The named reference Akimov was invoked but never defined (see the help page).
  11. ^ Griffin M, Casadio R, Bergamini CM (December 2002). "Transglutaminases: nature's biological glues". The Biochemical Journal. 368 (Pt 2): 377–96. doi:10.1042/BJ20021234. PMC 1223021. PMID 12366374.
  12. ^ Cite error: The named reference DiRaimondo was invoked but never defined (see the help page).
  13. ^ Cite error: The named reference Sabatino was invoked but never defined (see the help page).
  14. ^ Király R, Csosz E, Kurtán T, Antus S, Szigeti K, Simon-Vecsei Z, Korponay-Szabó IR, Keresztessy Z, Fésüs L (December 2009). "Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis". The FEBS Journal. 276 (23): 7083–96. doi:10.1111/j.1742-4658.2009.07420.x. PMID 19878304. S2CID 21883387.