In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct § Topological equivalence of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially.[1]
To illustrate this directly: suppose that and are iterated functions, and there exists a homeomorphism such that
so that and are topologically conjugate. Then one must have
and so the iterated systems are topologically conjugate as well. Here, denotes function composition.