Condensed matter physics |
---|
In physics, topological order[1] is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy[2] and quantized non-abelian geometric phases of degenerate ground states.[1] Microscopically, topological orders correspond to patterns of long-range quantum entanglement.[3] States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
Various topologically ordered states have interesting properties, such as (1) topological degeneracy and fractional statistics or non-abelian group statistics that can be used to realize a topological quantum computer; (2) perfect conducting edge states that may have important device applications; (3) emergent gauge field and Fermi statistics that suggest a quantum information origin of elementary particles;[4] (4) topological entanglement entropy that reveals the entanglement origin of topological order, etc. Topological order is important in the study of several physical systems such as spin liquids,[5][6][7][8] and the quantum Hall effect,[9][10] along with potential applications to fault-tolerant quantum computation.[11]
Topological insulators[12] and topological superconductors (beyond 1D) do not have topological order as defined above, their entanglements being only short-ranged, but are examples of symmetry-protected topological order.