This article needs to be updated.(March 2020) |
Mission type | Mars orbiter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Operator | ESA · Roscosmos | ||||||||||
COSPAR ID | 2016-017A | ||||||||||
SATCAT no. | 41388 | ||||||||||
Website | http://exploration.esa.int/jump.cfm?oid=46475 | ||||||||||
Mission duration | Planned: 7 years[1][2] Elapsed: 8 years, 8 months, 11 days | ||||||||||
Spacecraft properties | |||||||||||
Manufacturer | Thales Alenia Space | ||||||||||
Launch mass | 4,332 kg[3] | ||||||||||
Payload mass | Instruments: 113.8 kg (251 lb)[4] Schiaparelli: 577 kg (1,272 lb)[4] | ||||||||||
Dimensions | 3.2 × 2 × 2 m (10.5 × 6.6 × 6.6 ft)[4] | ||||||||||
Power | ~2000 W[4] | ||||||||||
Start of mission | |||||||||||
Launch date | 14 March 2016, 09:31UTC[5] | ||||||||||
Rocket | Proton-M/Briz-M | ||||||||||
Launch site | Baikonur 200/39 | ||||||||||
Contractor | Khrunichev | ||||||||||
Orbital parameters | |||||||||||
Reference system | Areocentric | ||||||||||
Regime | Circular | ||||||||||
Eccentricity | 0 | ||||||||||
Periareion altitude | 400 km (250 mi) | ||||||||||
Apoareion altitude | 400 km (250 mi) | ||||||||||
Inclination | 74 degrees | ||||||||||
Period | 2 hours | ||||||||||
Epoch | Planned | ||||||||||
Mars orbiter | |||||||||||
Orbital insertion | 19 October 2016, 15:24 UTC[6] | ||||||||||
Transponders | |||||||||||
Band | X band UHF band | ||||||||||
Frequency | 390–450 MHz | ||||||||||
TWTA power | 65 W | ||||||||||
| |||||||||||
ESA mission insignia for the ExoMars 2016 launch, featuring the Trace Gas Orbiter (left) and Schiaparelli (right). ExoMars programme |
The ExoMars Trace Gas Orbiter (TGO or ExoMars Orbiter) is a collaborative project between the European Space Agency (ESA) and the Russian Roscosmos agency that sent an atmospheric research orbiter and the Schiaparelli demonstration lander to Mars in 2016 as part of the European-led ExoMars programme.[7][8][9]
The Trace Gas Orbiter delivered the Schiaparelli lander on 16 October 2016, which crashed on the surface due to a premature release of the parachute.[10]
The orbiter began aerobraking in March 2017 to lower its initial orbit of 200 by 98,000 km (120 by 60,890 mi). Aerobraking concluded on 20 February 2018 when a final thruster firing resulted in an orbit of 200 by 1,050 km (120 by 650 mi).[11] Additional thruster firings every few days raised the orbiter to a circular "science" orbit of 400 km (250 mi), which was achieved on 9 April 2018.[12]
A key goal is to gain a better understanding of methane (CH4) and other trace gases present in the Martian atmosphere that could be evidence for possible biological activity. The programme was originally intended to follow with the Kazachok lander and the Rosalind Franklin rover in 2022,[13][14] which would have searched for biomolecules and biosignatures; the TGO would have operated as the communication link for the ExoMars lander and rover and provided communication for other Mars surface probes with Earth.
bbcnews20160314
was invoked but never defined (see the help page).