Traffic shaping

Traffic shaping is a bandwidth management technique used on computer networks which delays some or all datagrams to bring them into compliance with a desired traffic profile.[1][2] Traffic shaping is used to optimize or guarantee performance, improve latency, or increase usable bandwidth for some kinds of packets by delaying other kinds. It is often confused with traffic policing, the distinct but related practice of packet dropping and packet marking.[3]

The most common type of traffic shaping is application-based traffic shaping.[4][failed verification] In application-based traffic shaping, fingerprinting tools are first used to identify applications of interest, which are then subject to shaping policies. Some controversial cases of application-based traffic shaping include bandwidth throttling of peer-to-peer file sharing traffic. Many application protocols use encryption to circumvent application-based traffic shaping.

Another type of traffic shaping is route-based traffic shaping. Route-based traffic shaping is conducted based on previous-hop or next-hop information.[5]

  1. ^ IETF RFC 2475 "An Architecture for Differentiated Services" section 2.3.3.3 - Internet standard definition of "Shaper"
  2. ^ ITU-T Recommendation I.371: Traffic control and congestion control in B-ISDN Section 7.2.7 defines traffic shaping as a traffic control mechanism which "alters the traffic characteristics of a stream of cells on a VCC or a VPC to achieve a desired modification of those traffic characteristics, in order to achieve better network efficiency whilst meeting the QoS objectives or to ensure conformance at a subsequent interface. ... Shaping modifies traffic characteristics of a cell flow with the consequence of increasing the mean cell transfer delay."
  3. ^ "Cisco Tech Notes: Comparing Traffic Policing and Traffic Shaping for Bandwidth Limiting. Document ID: 19645". Cisco Systems. Aug 10, 2005. Retrieved 2014-03-08. Graphs illustrate differences in typical output
  4. ^ Dischinger, Marcel; Mislove, Alan; Haeberlen, Andreas; Gummadi, Krishna P. (October 2008). "Detecting BitTorrent Blocking" (PDF). Proceedings of the 8th ACM SIGCOMM conference on Internet measurement conference - IMC '08. p. 3. doi:10.1145/1452520.1452523. ISBN 978-1-60558-334-1. S2CID 429226.
  5. ^ Ascertaining the Reality of Network Neutrality Violation in Backbone ISPs, ACM HotNets 2008