Transmission Kikuchi Diffraction (TKD), also sometimes called transmission-electron backscatter diffraction (t-EBSD), is a method for orientation mapping at the nanoscale. It’s used for analysing the microstructures of thin transmission electron microscopy (TEM) specimens in the scanning electron microscope (SEM). This technique has been widely utilised in the characterization of nano-crystalline materials, including oxides, superconductors, and metallic alloys.
TKD offers improved spatial resolution, enabling effective characterization of nanocrystalline materials and heavily deformed samples where high dislocation densities can prevent successful characterization using conventional Electron backscatter diffraction. Many studies have reported sub-10 nm resolution using TKD.
The main difference between diffraction spots and Kikuchi bands is that in TEM, discrete diffraction spots arise from coherent scattering of the incident beam, while the formation of Kikuchi bands is described as a two-step process consisting of incoherent scattering of the primary beam followed by coherent scattering of these forward biased electrons. TKD has also been applied to analyse fine-grained ultramylonite peridotite samples in a scanning electron microscope. The preparation of TKD samples can be done with standard methods used for transmission electron microscopy (TEM).[1]