In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. An example of graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly k are called k-trees, and the graphs with treewidth at most k are called partial k-trees.[1] Many other well-studied graph families also have bounded treewidth.
Treewidth may be formally defined in several equivalent ways: in terms of the size of the largest vertex set in a tree decomposition of the graph, in terms of the size of the largest clique in a chordal completion of the graph, in terms of the maximum order of a haven describing a strategy for a pursuit–evasion game on the graph, or in terms of the maximum order of a bramble, a collection of connected subgraphs that all touch each other.
Treewidth is commonly used as a parameter in the parameterized complexity analysis of graph algorithms. Many algorithms that are NP-hard for general graphs, become easier when the treewidth is bounded by a constant.
The concept of treewidth was originally introduced by Umberto Bertelè and Francesco Brioschi (1972) under the name of dimension. It was later rediscovered by Rudolf Halin (1976), based on properties that it shares with a different graph parameter, the Hadwiger number. Later it was again rediscovered by Neil Robertson and Paul Seymour (1984) and has since been studied by many other authors.[2]