Trend-stationary process

In the statistical analysis of time series, a trend-stationary process is a stochastic process from which an underlying trend (function solely of time) can be removed, leaving a stationary process.[1] The trend does not have to be linear.

Conversely, if the process requires differencing to be made stationary, then it is called difference stationary and possesses one or more unit roots.[2][3] Those two concepts may sometimes be confused, but while they share many properties, they are different in many aspects. It is possible for a time series to be non-stationary, yet have no unit root and be trend-stationary. In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent impact on the mean (i.e. no convergence over time).[4]

  1. ^ About.com economics Online Glossary of Research Economics
  2. ^ "Differencing And Unit Root Tests" (PDF). pages.stern.nyu.edu. Archived (PDF) from the original on 2004-05-13. Retrieved 27 May 2023.
  3. ^ Burke, Orlaith (2011). "Non-Stationary Series" (PDF). www.stats.ox.ac.uk. University of Oxford. Archived from the original (PDF) on June 11, 2014. Retrieved 27 May 2023.
  4. ^ Heino Bohn Nielsen. "Non-Stationary Time Series and Unit Root Tests" (PDF).