Trigonopterus

Trigonopterus
Trigonopterus vandekampi from New Guinea
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Coleoptera
Family: Curculionidae
Subfamily: Cryptorhynchinae
Genus: Trigonopterus
Fauvel, 1862
Type species
Trigonopterus insignis
Fauvel, 1862
Synonyms[1]
  • Idotasia Pascoe, 1871
  • Eurysia Pascoe, 1885
  • Mimidotasia Voss, 1960
  • Microgymnapterus Voss, 1960

Trigonopterus is a genus of flightless weevils placed in the Cryptorhynchinae of Curculionidae. It is distributed in Australia, Indonesia and Melanesia. About 90 species had been formally described until March 2013, when a single paper more than doubled this number,[2] agreeing with previous studies[3] and a systematic barcoding study[4] that many more species have yet to be described. As of October 2021, there were 480 described species.

The center of its diversity appears to be New Guinea where 51 or more species can be found in a single locality.[5] Many of them are very similar to each other, but male genital characters and DNA barcoding allow a safe identification.

In January 2016, a paper was published that revised the Australian species within this genus. That paper described 24 new species and indicated the potential for more research into undescribed Australian species within this genus.[6][7]

In April 2016, a paper was published that described four new species in this genus from the island of New Britain. The paper postulated that more species of this genus presently unknown to science may exist on the island. It emphasised the importance of prioritising further research due to the ongoing destruction of the habitat of these species.[8]

Further papers described 133 new species from Sulawesi, where only one species (T. fulvicornis) had previously been recorded.[9][10]

The genus can be diagnosed among wingless cryptorhynchine weevils by the absence of a metanepisternum and by a synapomorphic structure of the tarsus with minute claws and a deeply incavated articulation of tarsomere 4. The metathoracic spiracle located externally at the side of the metaventrite is a unique feature and may ensure sufficient respiration during thanatosis.[11]

Trigonopterus species inhabit primary tropical forests, both on foliage and edaphic in the litter layer. They have a marked tendency to endemism with many species only known from a single locality. Their primary defence against predators is apparent death or thanatosis. An animated 3D model of a Trigonopterus weevil reveals a number of mechanisms to maintain a stable defensive position.[12]

  1. ^ Riedal, Alexander (27 July 2011). "The weevil genus Trigonopterus Fauvel (Coleoptera, Curculionidae) and its synonyms—a taxonomic study on the species tied to its genus-group names". Zootaxa. 2977: 1. doi:10.11646/zootaxa.2977.1.1.
  2. ^ Riedel, A.; Sagata, K.; Surbakti, S.; Tänzler, R.; Balke, M. (2013). "One hundred and one new species of Trigonopterus weevils from New Guinea". ZooKeys (280): 1–150. Bibcode:2013ZooK..280....1R. doi:10.3897/zookeys.280.3906. PMC 3677382. PMID 23794832.
  3. ^ Alexander Riedel (2010). "One of a thousand - a new species of Trigonopterus (Coleoptera, Curculionidae, Cryptorhynchinae) from New Guinea". Zootaxa. 2403: 59–68. doi:10.11646/zootaxa.2403.1.5.
  4. ^ Riedel, A.; Sagata, K.; Suhardjono, Y. R.; Tänzler, R.; Balke, M. (2013). "Integrative taxonomy on the fast track - towards more sustainability in biodiversity research". Frontiers in Zoology. 10 (1): 15. doi:10.1186/1742-9994-10-15. PMC 3626550. PMID 23537182.
  5. ^ Alexander Riedel, Daawia Daawia & Michael Balke (2010). "Deep cox1 divergence and hyperdiversity of Trigonopterus weevils in a New Guinea mountain range (Coleoptera, Curculionidae)". Zoologica Scripta. 39 (1): 63–74. doi:10.1111/j.1463-6409.2009.00404.x. S2CID 84957334.
  6. ^ Riedel, Alexander; Tänzler, Rene (21 January 2016). "Revision of the Australian species of the weevil genus Trigonopterus Fauvel". ZooKeys (556): 97–162. Bibcode:2016ZooK..556...97R. doi:10.3897/zookeys.556.6126. PMC 4740874. PMID 26877696.
  7. ^ Sheikh, Knvul (21 January 2016). "Hiding in Plain Sight: 24 New Beetle Species Discovered in Australia". Live Science. Retrieved 21 January 2016.
  8. ^ Van Dam, Matthew H.; Laufa, Raymond; Riedel, Alexander (21 April 2016). "Four new species of Trigonopterus Fauvel from the island of New Britain (Coleoptera, Curculionidae)". ZooKeys (582): 129–141. Bibcode:2016ZooK..582..129V. doi:10.3897/zookeys.582.7709. PMC 4857049. PMID 27199589.
  9. ^ Riedel, Alexander; Narakusumo, Raden Pramesa (7 March 2019). "One hundred and three new species of Trigonopterus weevils from Sulawesi". ZooKeys (828): 1–153. Bibcode:2019ZooK..828....1R. doi:10.3897/zookeys.828.32200. PMC 6418079. PMID 30940991.
  10. ^ Narakusumo, Raden Pramesa; Riedel, Alexander (22 October 2021). "Twenty-eight new species of Trigonopterus Fauvel (Coleoptera, Curculionidae) from Central Sulawesi". ZooKeys (1065): 29–79. Bibcode:2021ZooK.1065...29N. doi:10.3897/zookeys.1065.71680. PMC 8556212. PMID 34754263.
  11. ^ van de Kamp, T.; Cecilia, A.; dos Santos Rolo, T.; Vagovič, P.; Baumbach, T.; Riedel, A. (2015). "Comparative thorax morphology of death-feigning flightless cryptorhynchine weevils (Coleoptera: Curculionidae) based on 3D reconstructions". Arthropod Structure & Development. 44 (6): 509–523. doi:10.1016/j.asd.2015.07.004. PMID 26259678.
  12. ^ Van De Kamp, T.; Dos Santos Rolo, T.; Vagovič, P.; Baumbach, T.; Riedel, A. (2014). "Three-Dimensional Reconstructions Come to Life – Interactive 3D PDF Animations in Functional Morphology". PLOS ONE. 9 (7): e102355. Bibcode:2014PLoSO...9j2355V. doi:10.1371/journal.pone.0102355. PMC 4100761. PMID 25029366.