Tsirelson's stochastic differential equation (also Tsirelson's drift or Tsirelson's equation) is a stochastic differential equation which has a weak solution but no strong solution. It is therefore a counter-example and named after its discoverer Boris Tsirelson.[1] Tsirelson's equation is of the form
where is the one-dimensional Brownian motion. Tsirelson chose the drift to be a bounded measurable function that depends on the past times of but is independent of the natural filtration of the Brownian motion. This gives a weak solution, but since the process is not -measurable, not a strong solution.