Tuberculosis (TB) vaccines are vaccinations intended for the prevention of tuberculosis. Immunotherapy as a defence against TB was first proposed in 1890 by Robert Koch.[1] As of 2021, the only effective tuberculosis vaccine in common use is the Bacillus Calmette-Guérin (BCG) vaccine, first used on humans in 1921.[2][3][4] It consists of attenuated (weakened) strains of the cattle tuberculosis bacillus. It is recommended for babies in countries where tuberculosis is common.
About three out of every 10,000 people who get the vaccine experience side effects, which are usually minor except in severely immuno-depressed individuals. While BCG immunization provides fairly effective protection for infants and young children[5] (including defence against TB meningitis and miliary TB),[6][7] its efficacy in adults is variable,[8] ranging from 0% to 80%.[6][9] Several variables have been considered as responsible for the varying outcomes.[6] Demand for TB immunotherapy advancement exists because the disease has become increasingly drug-resistant.[1]
Other tuberculosis vaccines are at various stages of development, including:
MVA85A, a viral vector vaccine that uses an MVA virus engineered to express a tuberculosis bacillus antigen in host cells. Human and animal trials were disappointing.
rBCG30 is a version of the BCG vaccine engineered to express a higher amount of a certain antigen. It showed promise in animal tests in 2003[10] and phase I human trials in 2008.[11]
MTBVAC,[12] an attenuated form of Myobacterium tuberculosis. Phase II trials were completed in 2021 and 2022; phase III trials began in 2022 and will run until 2029.[13][14]
M72/AS01E, consisting of two fused tuberculosis bacillus protein antigens together with the adjuvant AS01. It is intended to prevent tuberculosis in people with a latent infection. Promising phase II trials were completed in 2018 and phase III trials are planned.[15]
GamTBVak, A subunit recombinant anti-tuberculosis vaccine for the prevention of pulmonary tuberculosis in adults, which is at the stage of clinical research. It contains Ag85A and ESAT-6-CFP-10 antigens in combination with an adjuvant. Developed by the N. F. Gamalei National Research Center for Epidemiology and Microbiology. As of May 2022, phase III clinical trials are underway, data on phase I/II studies are also published in the ClinicalTrials database. A phase I clinical trial on 12 volunteers confirmed the safety and immunological efficacy of the vaccine.
^ abPrabowo, S. et al. "Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines." Med Microbiol Immunol 202 (2013): 95–1041. Print.
^White, A. et al. "Evaluation of the Safety and Immunogenicity of a Candidate Tuberculosis Vaccine, MVA85A, Delivered by Aerosol to the Lungs of Macaques." Clinical and Vaccine Immunology 20 (2013): 663–672. Print.
^Cite error: The named reference Oksanen2013 was invoked but never defined (see the help page).
^ abcHussey, G, T Hawkridge, and W Hanekom. "Childhood Tuberculosis: Old And New Vaccines." Paediatric Respiratory Reviews 8.2 (2007): 148–154. Print.
^Verma, Indu, and Ajay Grover. "Antituberculous Vaccine Development: A Perspective For The Endemic World." Expert Review of Vaccines 8.11 (2009): 1547–1553. Print.
^Karonga Prevention Trial Group. "Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi." The Lancet 348 (1996): 17–24. Print.
^Tyne, A. et al. "TLR2-targeted secreted proteins from Mycobacterium tuberculosis areprotective as powdered pulmonary vaccines." Elsevier 31 (2013): 4322–4329. Print.