U6 spliceosomal RNA | |
---|---|
Identifiers | |
Symbol | U6 |
Rfam | RF00026 |
Other data | |
RNA type | Gene; snRNA; splicing |
Domain(s) | Eukaryota |
GO | GO:0000351 GO:0000353 GO:0030621 GO:0005688 GO:0046540 |
SO | SO:0000396 |
PDB structures | PDBe |
U6 snRNA is the non-coding small nuclear RNA (snRNA) component of U6 snRNP (small nuclear ribonucleoprotein), an RNA-protein complex that combines with other snRNPs, unmodified pre-mRNA, and various other proteins to assemble a spliceosome, a large RNA-protein molecular complex that catalyzes the excision of introns from pre-mRNA. Splicing, or the removal of introns, is a major aspect of post-transcriptional modification and takes place only in the nucleus of eukaryotes.
The RNA sequence of U6 is the most highly conserved across species of all five of the snRNAs involved in the spliceosome,[1] suggesting that the function of the U6 snRNA has remained both crucial and unchanged through evolution.
It is common in vertebrate genomes to find many copies of the U6 snRNA gene or U6-derived pseudogenes.[2] This prevalence of "back-ups" of the U6 snRNA gene in vertebrates further implies its evolutionary importance to organism viability.
The U6 snRNA gene has been isolated in many organisms,[3] including C. elegans.[4] Among them, baker's yeast (Saccharomyces cerevisiae) is a commonly used model organism in the study of snRNAs.
The structure and catalytic mechanism of U6 snRNA resembles that of domain V of group II introns.[5][6] The formation of the triple helix in U6 snRNA is deemed to be important in splicing activity, where its role is to bring the catalytic site to the splice site.[6]