Ultrafast electron diffraction

Ultrafast electron diffraction, also known as femtosecond electron diffraction, is a pump-probe experimental method based on the combination of optical pump-probe spectroscopy and electron diffraction. Ultrafast electron diffraction provides information on the dynamical changes of the structure of materials. It is very similar to time resolved crystallography, but instead of using X-rays as the probe, it uses electrons. In the ultrafast electron diffraction technique, a femtosecond (10–15 second) laser optical pulse excites (pumps) a sample into an excited, usually non-equilibrium, state. The pump pulse may induce chemical, electronic or structural transitions. After a finite time interval, a femtosecond electron pulse is incident upon the sample. The electron pulse undergoes diffraction as a result of interacting with the sample. The diffraction signal is, subsequently, detected by an electron counting instrument such as a charge-coupled device camera. Specifically, after the electron pulse diffracts from the sample, the scattered electrons will form a diffraction pattern (image) on a charge-coupled device camera. This pattern contains structural information about the sample. By adjusting the time difference between the arrival (at the sample) of the pump and probe beams, one can obtain a series of diffraction patterns as a function of the various time differences. The diffraction data series can be concatenated in order to produce a motion picture of the changes that occurred in the data. Ultrafast electron diffraction can provide a wealth of dynamics on charge carriers, atoms, and molecules.