In mathematics, an ultrametric space is a metric space in which the triangle inequality is strengthened to d ( x , z ) ≤ max { d ( x , y ) , d ( y , z ) } {\displaystyle d(x,z)\leq \max \left\{d(x,y),d(y,z)\right\}} for all x {\displaystyle x} , y {\displaystyle y} , and z {\displaystyle z} . Sometimes the associated metric is also called a non-Archimedean metric or super-metric.