Ultraviolet germicidal irradiation

A low-pressure mercury-vapor discharge tube floods the inside of a biosafety cabinet with shortwave UV light when not in use, killing microbes on irradiated surfaces.

Ultraviolet germicidal irradiation (UVGI) is a disinfection technique employing ultraviolet (UV) light, particularly UV-C (180–280 nm), to kill or inactivate microorganisms. UVGI primarily inactivates microbes by damaging their genetic material, thereby inhibiting their capacity to carry out vital functions.[1]

The use of UVGI extends to an array of applications, encompassing food, surface, air, and water disinfection. UVGI devices can inactivate microorganisms including bacteria, viruses, fungi, molds, and other pathogens.[2][3] Recent studies have substantiated the ability of UV-C light to inactivate SARS-CoV-2, the strain of coronavirus that causes COVID-19.[4][5][6][7][8][9]

UV-C wavelengths demonstrate varied germicidal efficacy and effects on biological tissue.[9][10][11] Many germicidal lamps like low-pressure mercury (LP-Hg) lamps, with peak emissions around 254 nm, contain UV wavelengths that can be hazardous to humans.[12][13] As a result, UVGI systems have been primarily limited to applications where people are not directly exposed, including hospital surface disinfection, upper-room UVGI, and water treatment.[14][15][16] More recently, the application of wavelengths between 200-235 nm, often referred to as far-UVC, has gained traction for surface and air disinfection.[11][17][18] These wavelengths are regarded as much safer due to their significantly reduced penetration into human tissue.[19][20][21][22]

Notably, UV-C light is virtually absent in sunlight reaching the Earth's surface due to the absorptive properties of the ozone layer within the atmosphere.[23]

  1. ^ Kowalski W (2009). "UVGI Disinfection Theory". Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Berlin, Heidelberg: Springer. pp. 17–50. doi:10.1007/978-3-642-01999-9_2. ISBN 978-3-642-01999-9.
  2. ^ Kowalski W (2009). "UV Rate Constants". Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Berlin, Heidelberg: Springer. pp. 73–117. doi:10.1007/978-3-642-01999-9_4. ISBN 978-3-642-01999-9.
  3. ^ Hessling M, Haag R, Sieber N, Vatter P (2021-02-16). "The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data". GMS Hygiene and Infection Control. 16: Doc07. doi:10.3205/dgkh000378. PMC 7894148. PMID 33643774.
  4. ^ Buonanno M, Welch D, Shuryak I, Brenner DJ (June 2020). "Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses". Scientific Reports. 10 (1): 10285. Bibcode:2020NatSR..1010285B. doi:10.1038/s41598-020-67211-2. PMC 7314750. PMID 32581288.
  5. ^ Biasin M, Bianco A, Pareschi G, Cavalleri A, Cavatorta C, Fenizia C, et al. (March 2021). "UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication". Scientific Reports. 11 (1): 6260. doi:10.1038/s41598-021-85425-w. PMC 7973506. PMID 33737536.
  6. ^ Storm N, McKay LG, Downs SN, Johnson RI, Birru D, de Samber M, et al. (December 2020). "Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation". Scientific Reports. 10 (1): 22421. Bibcode:2020NatSR..1022421S. doi:10.1038/s41598-020-79600-8. PMC 7773738. PMID 33380727.
  7. ^ Robinson RT, Mahfooz N, Rosas-Mejia O, Liu Y, Hull NM (August 2022). "UV222 disinfection of SARS-CoV-2 in solution". Scientific Reports. 12 (1): 14545. Bibcode:2022NatSR..1214545R. doi:10.1038/s41598-022-18385-4. PMC 9406255. PMID 36008435.
  8. ^ Jung WK, Park KT, Lyoo KS, Park SJ, Park YH (August 2021). "Demonstration of Antiviral Activity of far-UVC Microplasma Lamp Irradiation Against SARS-CoV-2". Clinical Laboratory. 67 (8). doi:10.7754/clin.lab.2020.201140. PMID 34383419. S2CID 236999461.
  9. ^ a b Ma B, Gundy PM, Gerba CP, Sobsey MD, Linden KG (October 2021). Dudley EG (ed.). "UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources". Applied and Environmental Microbiology. 87 (22): e0153221. Bibcode:2021ApEnM..87E1532M. doi:10.1128/AEM.01532-21. PMC 8552892. PMID 34495736.
  10. ^ Kowalski W (2009). "UVGI Safety". Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Berlin, Heidelberg: Springer. pp. 287–311. doi:10.1007/978-3-642-01999-9_12. ISBN 978-3-642-01999-9.
  11. ^ a b Blatchley III ER, Brenner DJ, Claus H, Cowan TE, Linden KG, Liu Y, et al. (2023-03-19). "Far UV-C radiation: An emerging tool for pandemic control". Critical Reviews in Environmental Science and Technology. 53 (6): 733–753. Bibcode:2023CREST..53..733B. doi:10.1080/10643389.2022.2084315. ISSN 1064-3389. S2CID 249592926.
  12. ^ Zaffina S, Camisa V, Lembo M, Vinci MR, Tucci MG, Borra M, et al. (27 March 2012). "Accidental exposure to UV radiation produced by germicidal lamp: case report and risk assessment". Photochemistry and Photobiology. 88 (4): 1001–1004. doi:10.1111/j.1751-1097.2012.01151.x. PMID 22458545. S2CID 40322318.
  13. ^ Sengillo JD, Kunkler AL, Medert C, Fowler B, Shoji M, Pirakitikulr N, et al. (January 2021). "UV-Photokeratitis Associated with Germicidal Lamps Purchased during the COVID-19 Pandemic". Ocular Immunology and Inflammation. 29 (1): 76–80. doi:10.1080/09273948.2020.1834587. PMID 33215961. S2CID 227077219.
  14. ^ Reed NG (January 1, 2010). "The history of ultraviolet germicidal irradiation for air disinfection". Public Health Reports. 125 (1): 15–27. doi:10.1177/003335491012500105. PMC 2789813. PMID 20402193.
  15. ^ Ramos CC, Roque JL, Sarmiento DB, Suarez LE, Sunio JT, Tabungar KI, et al. (2020). "Use of ultraviolet-C in environmental sterilization in hospitals: A systematic review on efficacy and safety". International Journal of Health Sciences. 14 (6): 52–65. PMC 7644456. PMID 33192232.
  16. ^ "Wastewater Technology Fact Sheet: Ultraviolet Disinfection" (PDF). September 1999.
  17. ^ Brenner DJ (November 2022). "Far-UVC Light at 222 nm is Showing Significant Potential to Safely and Efficiently Inactivate Airborne Pathogens in Occupied Indoor Locations". Photochemistry and Photobiology. 99 (3): 1047–1050. doi:10.1111/php.13739. PMID 36330967. S2CID 253302952.
  18. ^ Milton DK, Nardell EA, Michaels D (2022-04-21). "Opinion | We Have the Technology to Stop Superspreading Without Masks". The New York Times. ISSN 0362-4331. Retrieved 2023-06-19.
  19. ^ Buonanno M, Ponnaiya B, Welch D, Stanislauskas M, Randers-Pehrson G, Smilenov L, et al. (April 2017). "Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light". Radiation Research. 187 (4): 483–491. Bibcode:2017RadR..187..493B. doi:10.1667/RR0010CC.1. PMC 5552051. PMID 28225654.
  20. ^ Buonanno M, Stanislauskas M, Ponnaiya B, Bigelow AW, Randers-Pehrson G, Xu Y, et al. (2016-06-08). "207-nm UV Light-A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies". PLOS ONE. 11 (6): e0138418. Bibcode:2016PLoSO..1138418B. doi:10.1371/journal.pone.0138418. PMC 4898708. PMID 27275949.
  21. ^ Eadie E, Barnard IM, Ibbotson SH, Wood K (May 2021). "Extreme Exposure to Filtered Far-UVC: A Case Study". Photochemistry and Photobiology. 97 (3): 527–531. doi:10.1111/php.13385. PMC 8638665. PMID 33471372.
  22. ^ Kaidzu S, Sugihara K, Sasaki M, Nishiaki A, Ohashi H, Igarashi T, Tanito M (May 2021). "Re-Evaluation of Rat Corneal Damage by Short-Wavelength UV Revealed Extremely Less Hazardous Property of Far-UV-C". Photochemistry and Photobiology. 97 (3): 505–516. doi:10.1111/php.13419. PMC 8251618. PMID 33749837.
  23. ^ "Reference Air Mass 1.5 Spectra". www.nrel.gov. Retrieved 2023-06-19.