Unduloid

Computer generated unduloid

In geometry, an unduloid, or onduloid, is a surface with constant nonzero mean curvature obtained as a surface of revolution of an elliptic catenary: that is, by rolling an ellipse along a fixed line, tracing the focus, and revolving the resulting curve around the line. In 1841 Delaunay proved that the only surfaces of revolution with constant mean curvature were the surfaces obtained by rotating the roulettes of the conics. These are the plane, cylinder, sphere, the catenoid, the unduloid and nodoid.[1]

  1. ^ Delaunay, Ch. (1841). "Sur la surface de révolution dont la courbure moyenne est constante". Journal de Mathématiques Pures et Appliquées. 6: 309–314.