Uninterpreted function

In mathematical logic, an uninterpreted function[1] or function symbol[2] is one that has no other property than its name and n-ary form. Function symbols are used, together with constants and variables, to form terms.

The theory of uninterpreted functions is also sometimes called the free theory, because it is freely generated, and thus a free object, or the empty theory, being the theory having an empty set of sentences (in analogy to an initial algebra). Theories with a non-empty set of equations are known as equational theories. The satisfiability problem for free theories is solved by syntactic unification; algorithms for the latter are used by interpreters for various computer languages, such as Prolog. Syntactic unification is also used in algorithms for the satisfiability problem for certain other equational theories, see Unification (computer science).

  1. ^ Bryant, Randal E.; Lahiri, Shuvendu K.; Seshia, Sanjit A. (2002). "Modeling and Verifying Systems Using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions" (PDF). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 2404. pp. 78–92. doi:10.1007/3-540-45657-0_7. ISBN 978-3-540-43997-4. S2CID 9471360.
  2. ^ Baader, Franz; Nipkow, Tobias (1999). Term Rewriting and All That. Cambridge University Press. p. 34. ISBN 978-0-521-77920-3.