This article includes a list of general references, but it lacks sufficient corresponding inline citations. (November 2015) |
In mathematics, a unipotent element[1] r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.
In particular, a square matrix M is a unipotent matrix if and only if its characteristic polynomial P(t) is a power of t − 1. Thus all the eigenvalues of a unipotent matrix are 1.
The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity.
In the theory of algebraic groups, a group element is unipotent if it acts unipotently in a certain natural group representation. A unipotent affine algebraic group is then a group with all elements unipotent.