In the area of mathematical logic and computer science known as type theory, a unit type is a type that allows only one value (and thus can hold no information). The carrier (underlying set) associated with a unit type can be any singleton set. There is an isomorphism between any two such sets, so it is customary to talk about the unit type and ignore the details of its value. One may also regard the unit type as the type of 0-tuples, i.e. the product of no types.
The unit type is the terminal object in the category of types and typed functions. It should not be confused with the zero or empty type, which allows no values and is the initial object in this category. Similarly, the Boolean is the type with two values.
The unit type is implemented in most functional programming languages. The void type that is used in some imperative programming languages serves some of its functions, but because its carrier set is empty, it has some limitations (as detailed below).